KEY TO THE PUPAE OF THE MOSQUITOES (DIPTERA: CULICIDAE) OF FLORIDA

Richard F. Darsie, Jr.
Florida Medical Entomology Laboratory, $2009^{\text {th }}$ Street SE, Vero Beach, FL 32962, U.S.A. (e-mail: rfd@mail.ifas.ufl.edu)

Abstract.-A key is presented for the known pupae of the mosquito species in Florida. This will complement the recent keys to adult females and fourth-instar larvae by Darsie and Morris. The pupal stage for all 78 species in Florida are known, except Ochlerotatus condolescens (Dyar and Knab). The sources for pupal descriptions are included.

Key Words: pupal key, mosquitoes, Florida

Of all the stages in the life cycle of mosquitoes, the pupa and possibly the male and its genitalia, are of least interest to practicing mosquito control agencies. Yet, the more stages that are known and can be identified the more complete will be the knowledge of the species encountered in a district. One problem that confronts those interested in pupal identification is the preparation of specimens for study. Whole pupae are not ordinarily used; instead the pupal exuviae are employed. They are usually prepared as part of an individual rearing when larval and pupal exuviae are associated with the emerged adults. The rearing technique is described by Darsie (1951).

Gradually a body of knowledge has accumulated in many taxonomic works describing the pupa along with the other stages from the fourth-instar larva to the adult. Sufficient descriptions have been published, in addition to my own unpublished work, to devise a key to the 78 species now known from Florida, except Ochlerotatus condolescens (Dyar and Knab), recently reported from Florida by Darsie (2003), whose larva and pupa are unknown. Major nomenclatural changes occurred when Reinert (2000) elevated Ochlerotatus Lynch

Arribálzaga to generic rank and Reinert et al. (2004), studying the tribe Aedini, further raised Howardina Theobald and Stegomyia Theobold to genus as well as other former subgenera and one new genus in the Nearctic Region not found in Florida.

Here is a list of the publications which contributed to formulating the keys: Arnell (1976), Barr (1963), Barr and Barr (1969), Belkin et al. (1970), Berlin (1969), Darsie (1949, 1951, 2001, 2003, 2005), Darsie and Day (2003), Floore et al. (1975), Lacey and Lake (1972), Reinert (1970a, b, c, d, e, f, g, 1971), Reinert et al. (1997), Zavortink (1968, 1972), Zavortink and O'Meara (1999).

Morphology of the Pupal Exuviae

It is customary to mount the pupal exuviae, for this, not the whole pupa, is used to study the pupal stage. The head capsule, prothorax, and mesothorax are closely united into the cephalothorax (CT), whereas the metathorax is reduced to a dorsal plate known as the metanotum. The scutum of the mesothorax is split longitudinally during eclosion, therefore the cephalothorax is mounted ventrally so that the external halves are uppermost after detaching the

Fig. 1. Cephalothorax of pupal exuvium in slide mounted position. Abbreviations: A-dorsal apotome, Clateralia, D-clypeus, E-labrum, F-mandible, G-maxilla, H-maxillary palpus, J-antenna, K-foreleg, L -midleg, M -hindleg, N -mesothoracic wing, O -trumpet, P -tracheal trunk, R -scutum.
metanotum and abdomen from the remainder of the cephalothorax. Hence, the mouthparts are located centrally, the halves of the scutum with the trumpets and the mesothoracic wings are lateral in position.

Head (Fig. 1): The dorsal apotome (A) is located anteromedially, attached to the clypeus (D) and the bases of the antennae (J). The labrum (E), fused basally with the clypeus, forms the central, long, narrow mouthpart. The mandibles (F), which border the labrum on each side, are also long and narrow, followed laterally by the maxillae (G), which are joined at the bases by
the maxillary palpi (H). The bases of the antennae lie in a fold which develops as a result of the cephalothorax being mounted ventrally and the long antennae are found lateral to the mouthparts. The lateralia (C) lie anteriorly, mesad to the antennal bases and are mainly located in the fold. The lateralia bear three rather prominent setae. 1,2,3-CT.

Thorax (Fig. 1): The pronotal sclerites are small and usually misshapen by the folding. Setae $4-7$-CT are attached to this area. The largest sclerite of the cephalothorax is the scutum (R), split in half by eclo-
sion. The margin along the split is known as the median keel and a creaselike line parallel to the keel is the lateral line. The small, dorsomedial sclerite of the scutum bears an anterior angle. The scutum has setae 8,9 -CT and a more or less cylindrical trumpet. The tubular portion is the meatus and the open. distal portion is the pinna. The base of the trumpet is connected to the tracheal trunks (P) of the respiratory system. The trumpet index is calculated by dividing the length of the organ by the width at midlength. Lateral to the mandibles and maxillae are the sclerites of the fore- and midlegs (K,L). Finally the mesothoracic wings (N) are posterior and sclerites of the hindlegs (M) are curled beneath them.

The metanotum consists of two rather quadrangular sclerites connected by a bridge. They cover the developing halteres and bear setae 10-12-CT.

Abdomen (Figs. 2-4): Abdominal segments I-VIII are more or less well developed. Segment \mathbf{I} is without a sclerotized sternum and is modified by the presence of float hairs, seta 1-I. The terga and the sterna of segments II-VIII are well developed and consist of quadrangular sclerites adjoined by short intersegmental membranes. Posterior to segment VIII is a flap, segment IX, a genital pouch in which genitalia of the adult develop, and the paddle (Pa). The paddles are variously shaped, usually oval. Each is supported by an external buttress, a thickening along the basal 0.75 of the external margin, and a midrib, a similar thickening located medially. The external margin of the paddle sometimes bears short or long spicules or coarse denticles. The paddle index is calculated by dividing the paddle length by the greatest width.

Chaetotaxy of the abdomen: The present nomenclature for the abdominal setae follows Belkin (1962) and is shown in Figs. $2-4$. Those studying older pupal literature will find it helpful to consult a table in Harbach and Knight (1980) comparing various past nomenclature with the one in Belkin (1962).

The keys to the pupae of the mosquitoes of Florida follow. The reader is referred to the Systematic Index of the Mosquitoes of Florida by Darsie and Morris (2003) for complete species detail. The keys were tested with pupae from the author's collection in which 60 of 78 species were available. For the other 18 species, descriptions and illustrations from the literature, except for Oc. condolescens, were employed (see literature citations above). I have three pupae of Oc. canadensis mathesoni Middlekauff from Camp Blanding, Clay County, Florida, collected on II-19-46. They are quite similar to the pupa of the typical subspecies.

Four illustrations are included to assist users of the key, namely, cephalothorax, Fig. 1: Anopheles crucians Wiedemann, Fig. 2; Ochlerotatus sollicitans (Walker), Fig. 3; and Culex nigripalpus Theobald, Fig. 4. Figures 2-4 represent the three major genera of mosquitoes in Florida and have the setae numbered. These three figures will help in dealing with the identification of minor genera.

Keys to the Pupae of the Mosquitoes of Florida Key to Genera

1. Seta 9-III-VI at or very near caudolateral angle of tergum, usually distinctly spiniform; meatus of trumpet deeply slit to near base Anopheles

- Seta 9-III-VI distinctly removed from cau-do-lateral angle of tergum; meatus of trumpet usually split a short distance from pinna, if at all

2
2(1). Meatus of trumpet with distinct tracheoid extending considerable distance from base

- Meatus of trumpet without tracheoid or a faint tracheoid near base
3(2). Trumpet without pinna, apical process pointed, adapted for piercing plant tissue

4

- Trumpet with distinct open pinna 5

4(3). Seta 6-I-VI absent; paddle emarginate apically, with 2 equal lobes

Coquillettidia perturbans

- Seta 6-I-VI present; paddle emarginate apically on inner margin only, outer lobe developed Mansonia
5(3). Seta 8-CT closer to base of trumpet than

Fig. 2. Pupa of Anopheles crucians. A. Cephalothorax. B. Metanotum and ahdomen. dorsal left. ventral right. Abbreviations: CT-cephalothorax, Pa -paddle.
to seta 9-CT, at or near level of trumpet
Uranotaenia
of trumpet, removed far caudad of trumpet66(5). Paddle with seta 1-P subequal to paddlelength Deinocerites cancerPaddle with seta 1-P much shorter thanpaddle . Culex7(2). Anal segment with conspicuous cercal seta1-X Toxorhynchites r. rutilus,Toxorlynchites r. septentrionalis

- Cercal seta 1-X absent 8
8(7). Setae 9-VII,VIII subequal, both large withnumerous branches, paddle small, without
Wyeomyia
Seta 9-VII rarely subequal to 9-VIII, bothwith fewer branches; paddle normally withat least one seta9
9(8). Setae 8,9-CT in line perpendicular to me-dian keel; paddle without marked infusca-tion near external buttress and apex . . .10
- \quad Seta 8-CT usually distinctly more anterior
than 9-CT, if rarely the two setae in lineperpendicular to median keel, then paddlewith marked infuscation near external but-tress and apex11
10(9). Abdominal seta 1-VI lateral to setae 2,3-
VI Culiseta
Abdominal seta 1-Vl mesad of setae 2,3-
VI Orthopodomyia
11(9). Abdominal seta 5-11 mesad of seta 4-II orpaddle deeply infuscated near external but-tress and apexPsorophora
Abdominal seta 5-1I lateral of seta 4-II andpaddle not infuscate . . Aedes, Ochlerotatus,Howardina, Stegomyia
Key to the Genera Aedes (Ae), Ochlerotatus (Oc), Howardina (Hw) and Stegomyia (St)

1. Seta 6-CT long, stout, longer than seta 7CT . 2
Seta 6-CT short to moderately long, usually much shorter than seta 7-CT 3
2(1). Seta 9-VIII single: paddle with long, marginal spicules St. albopicta Seta 9-VIIl with 3-8 branches; paddle margin with short, coarse spicules

> St. aegypti
3(1). Seta 5-VII short, 0.3 or less length of following tergum4
Seta 5-VlI moderately long to long, 0.5or more length of following tergum12
4(3). Anterior border of abdominal segmentVIII almost as wide as posterior border ofVII; paddle with margin smooth; seta 6-

VII ventral and removed cephalad from posterior border Oc. fulvus pallens

- Anterior border of segment VIII definitely narrower than posterior border of VII; posterior border paddle with marginal and submarginal spicules: seta 6-VII dorsal and near posterior margin 5
5(4). Seta 1-II with 14 or more branches; seta 6-VI single; paddle slightly emarginate posteriorly
- Seta 1-II with 12 or fewer branches; seta 6-VI usually double or triple; paddle evenly rounded posteriorly 7
6(5). Seta l-III usually with 6 or more branches; paddle as wide as long or nearly so, with prominent marginal and sub marginal spicules, longer than diameter of 1-P alveolus Oc. taeniorhynchus Seta 1-III with fewer than 6 branches; paddle longer than wide, with marginal and sub-marginal spicules usually smaller than seta 1-P alveolus Oc. scapularis
7(5). Seta 5-IV-VI single, extremely long, longer than following tergum . . . Oc. dupreei
- Seta 5-IV-V1 usually double, never all single, often no longer than following tergum
8(7). Seta 3-I-III and 11-CT usually all single, sum of all branches of the 8 setae no more than 15

9

- \quad Setae 3-I,II, 11-CT and usually 3-III with 2 or more branches, sum of all branches of the 8 setae not less than 17
$9(8)$. Seta 6-I subequal to seta 7-I or somewhat shorter, about equal to median length of tergum 1 Oc. thelcter Seta 6-I much longer than seta 7-I and the median length of tergum 1 10
10(9). Seta 6-1II double; seta 12 -CT usually double Oc. infirmatus Seta 6-III usually single; seta 12-CT with 3 or more branches

Oc. tortilis
11(8). Seta 6-CT with 3 or more branches; apical margin of paddle spiculate

Oc. tormentor

- Seta 6-CT usually single; apical margin of paddle without spicules . . Oc. atlanticus
12(3). Seta 1-VI and usually seta 1-V short, less than 0.5 length of following tergum; seta 3-V usually single
Seta 1-V,VI moderately long to long, more than 0.5 length of following tergum; seta 3-V usually double or multibranched

15
13(I2). Seta l-IV usually 4- or 5 -branched; seta 5-1V longer than tergum V Oc. hendersoni

- \quad Seta 1-IV usually double or triple (2-4);

Fig. 3. Pupa of Ochlerotatus sollicitans. A, Cephalothorax. B, Metanotum and abdomen, dorsal left, ventral right. Abbreviations: CT-cephalothorax, Pa -paddle.

A

Fig. 4. Pupa of Culex nigripalpus. A, Cephalothorax. B, Metanotum and abdomen, dorsal left, ventral right. Abbreviations: CT-cephalothorax, Pa -paddle.
seta 5-IV usually shorter than tergum V
14(13). Seta 6-I single; seta 7-I usually double; seta 9-VIII usually with fewer than 7 branches

Oc. triseriatus
Seta 6-I usually double; seta 7-I usually triple: seta 9-VIII usually with more than 8 branches

Hw. bahamensis
15(12). Sternum II with apical spicules; seta 3-I
single; seta 3 -VII with 4 or more branches Ae. vexans

- Sternum II without apical spicules; seta 3-I usually with 2 or more branches; seta 3-VII usually double or single
16(15). Seta 1-V and usually seta 1-VI much longer and stouter than any other setae on tergum, except seta 5 and sometimes seta $10, \mathrm{~V}-\mathrm{VI}$
- Seta I-V,VI only slightly stouter and usually only slightly longer than any other seta on tergum, except seta 5 and sometimes seta $10-\mathrm{V}, \mathrm{Vl}$, if at all
17(16). Seta 5-IV-V1 shorter than following tergum; seta 1-VI usually triple
. Oc. mitchellae
Seta $5-\mathrm{IV}-\mathrm{VI}$ as long as or longer than following tergum; seta 1 -VI usually single

18
18(17). Seta 9-VII with 5 or more branches
Oc. sollicitans

- \quad Seta 9-VII with 3 or fewer branches

Oc. c. canadensis, Oc. c. mathesoni
19(16). Seta I-IV,V longer than following tergum
Oc. sticticus

- Seta l-IV,V not as long as following tergum . 20
20(19). Seta 3-II,1II and 5-IV-VI almost invariably single; seta 5-IV occasionally double or triple; seta 9-VIII single, rarely double

Ae. cinereus
Seta 3-II,III and 5-IV-VI never all single; seta 9-VIII usually with 3 or more branches Oc. thibaulti

Key to the Genus Anopheles

1. Abdominal setae all very short, I-IV-VI 0.2 length of following tergum . . . barberi

- Abdominal setae long and short, I-IV-VI at least 0.5 length of following tergum
2(1). Seta 9-VIII usually single, rarely forked apically; seta I-IV-VII all single and about as long as following tergum
. albimanus
- Seta 9-VIII with thickened shaft and many lateral branches; seta 1-IV-VIl usually all branched and shorter than following tergum
3(2). Paddle with coarse, blunt teeth on external margin walker
- Paddle without coarse teeth on external margin .
4(3). Seta 2-V usually with 4-6 branches; seta
$0-\mathrm{V}$ with $2-11$ branches, rarely single; seta 11-CT usually with 6 branches
- Seta $2-\mathrm{V}$ usually single to triple; seta 0 -

V single seldom double; seta 11-CT usually with 3-5 branches

7
5(4). Seta 0-IV large, usually with 2-5 branches; seta 0-V large, with 3-11 branches . crucians

- \quad Seta $0-\mathrm{IV}, \mathrm{V}$ small, single or double, rarely triple .

4

6(5). Seta $1,5-\mathrm{IV}$ with $5-10$ branches, usually with 5.6 branches; seta $1-\mathrm{V}$ and $5-\mathrm{VI}$ with $3-8$ branches; seta $5-\mathrm{V}$ with $3-5$ branches.

Seta 1-1V with $9-14$ branches; seta 1-V with 6-10 branches; seta 5-IV with 1217 branches; seta $5-\mathrm{V}$ with $8-16$ branches; seta 5-VI with $9-13$ branches

georgianus

7(4). Seta 6-V double or triple: seta 8-CT usually double or triple 8
Seta $6-\mathrm{V}$ and seta $8-\mathrm{CT}$ single, seldom double
8(7). Seta 9-I single, seldom double: length of seta 9-VII usually 7.0 or greater than basal width atropos
Seta 9-I usually with 2 or more branches; length of seta 9-VII usually 6.8 or less than basal width (quadrimaculatus complex)
9(8). Dorsal apotome with well developed median apical projection; scutum with anterior angle broad, approximately 90°
. maverlius

- Dorsal apotome without apical projection; scutum with anterior angle acute

10
10(9). Cephalothorax with lateral line on median keel long, extending posteriorly to seta 8CT: cephalothorax with postscutal area split by dorsal ecdysial opening; seta 1VII usually slightly longer than length of tergum VIII
Cephalothorax with lateral line of median keel short, extending posteriorly only to trumpet base; cephalothorax with posts: cutal area intact; seta $1-$ VIl usually 0.75 or less length of tergum VIII 12
$11(10)$. Sum of branches for both setae 1-P usually $4-12$; seta $1-P$ usually with $2-6$ branches; sum of both setae 9-VIII usually $24-48 \ldots$. quadrimaculatus ss Sum of branches for both seta I-P usually 2,3: seta 1-P usually single; sum of branches for both setae 9-VIIl usually 12-23 smaragdinus
12(10). Sum of branches for both setae 10 -CT usually 2-5; distribution limited to part of Florida diluvialis

- Sum of branches for both setae 10-CT usually 6-11; distribution in at least 3 states of USA inundatus
13(7). Seta 6-1 single to triple; setai 9-IV 0.67 or more length of seta $9-\mathrm{V}$. . . . punctipennis Seta 6-1 with 5 or more branches; seta 9IV 0.63 or less length of $9-\mathrm{V} \ldots$ grabhamii

Key to the Genus Culex

Seta 5-CT very long, about 5.0 length of seta $4-\mathrm{CT}$; abdominal tergum VIII with posterior lobe overlying lateral part of tergum 1X: seta $1-1 X$ absent (subgenus Micraedes)
biscornensis

-	Seta 5-CT no more than 2.0 length of seta 4-CT; abdominal tergum VIII with posterior lobe not overlying lateral part of tergum IX; seta I-IX present 2
2(1).	Meatus of trumpet with narrow slit extending from proximal part of pinna; seta 2-VI usually lateral of seta I-VI (subgenus Melanoconion)
-	Meatus of trumpet without narrow slit extending from proximal part of pinna; seta 2-VI mesad of seta 1-VI
3(2).	Seta 9-VIII very near posterolateral corner; posterolateral corner of segment VIII gently rounded \qquad cedecei
-	Seta 9-VIII distinctly removed from pos-tero-lateral corner; posterolateral corner of segment V1II with distinct point . . . 4
4(3).	Seta 5-V double or triple and nearly as long as following tergum 5
-	Seta $5-\mathrm{V}$ usually with at least 4 branches, if fewer. then distinctly shorter than following tergum
5(4).	Seta 1-II with 14 or fewer branches; pinna of trumpet, including slit, less than 0.3 of total trumpet length pilosus
-	Seta 1-II with 25 or more branches; pinna of trumpet including slit $0.4-0.5$ of total trumpet length \qquad
6(4).	Seta 6-IV,V at least 4-branched; seta 5-V usually 5 -branched; trumpet index usually greater than 8.5 atratus
-	Seta 6-IV,V usually triple; seta $5-\mathrm{V}$ usually 4-branched; trumpet index about 8.0
7(6).	Pinna including slit about 0.35 length of trumpet; seta 8 -CT single . mulrennani
-	Pinna including slit about 0.4 length of trumpet; seta 8 -CT with 3 or more branches
8(7).	Trumpet lighter between apex of tracheoid and base of pinna, flared apically
-	iolambdis Trumpet uniformly dark distal to apex of tracheoid and base of pinna, if lighter, then remainder of trumpet also lighter, not flared apically \qquad
9(2).	Trumpet index 7.7; seta 9-VII usually double; seta 9-VIII usually 4-branched (subgenus Neoculex) territans
-	Trumpet index about 7.0; seta 9-VII usually with 4 or more branches; seta 9-VIII usually 6-branched or more (subgenus Culex)
10(9).	Abdominal tergum I with distinct short spicules posterior \qquad bahamensis
-	Abdominal tergum I without short spicules posterior \qquad

Seta 5-CT no more than 2.0 length of seta 4-CT; abdominal tergum VIII with posterior lobe not overlying lateral part of tergum IX; seta I-IX present Seta 1-II with 25 or more branches; pinna of trumpet including slit $0.4-0.5$ of total trumpet length
erraticus
6(4). Seta 6-IV,V at least 4-branched; seta 5-V usually 5 -branched; trumpet index usually greater than 8.5 atratus
Seta 6-IV,V usually triple; seta $5-\mathrm{V}$ usually 4-branched; trumpet index about 8.0 trumpet; seta 8 -CT single mulrennani Pinna including slit about 0.4 length of trumpet; seta 8 -CT with 3 or more branches

1. Seta $2-\mathrm{II}-\mathrm{VI} 0.4-0.6$ length of seta $1-\mathrm{II}-\mathrm{VI}$; seta $5-\mathrm{III}$ longer and stronger than seta $3-\mathrm{III}$; setae 6,7-I weakly developed alba

- Seta 2-II-VI less than 0.3 length of seta 1-IIVI; seta 5-III not as long nor as strong as seta 3-III; setae 6,7-I long, strong signifera

Key to the Genus Psorophora

1. Posterolateral corner of abdominal segment IV with large spines; seta 2-P usually absent (subgenus Janthinosoma)

- Posterolateral corner of IV without large spines; seta 2-P usually present, sometimes indistinct
2(I). Seta 10-CT with 3 or fewer branches; seta 5-II usually with 4 or fewer branches; seta 1-III usually with 6 or fewer branches
mathesoni
- Seta 10-CT and seta 5-II usually with 5 or more branches; seta I-III usually with 7 or more branches
3(2). Heavily pigmented, appears brown, not yellow; trumpet index less than 3.0; seta 12CT usually with 5 or more branches. . johnstonii
- Lightly pigmented, appears yellow; trumpet index 3.0-4.0; seta 12-CT usually with 4 or fewer branches (except horrida)
4(3). Seta 12-CT single or double; seta 4-I,II with 4 or fewer branches
- \quad Seta 12-CT and 4-I,II usually with 4 or more branches . horrida
5(1). Seta 4 closer to seta 5 than to seta 1 on abdominal segment III, usually anterior to and subequal to seta 5 ; seta 5-II,III usually with 3 or fewer branches: seta 9-VIII usually with 5 or fewer principal branches; pupa large (subgenus Psorophora)
- Seta 4 closer to seta 1 than to seta 5 on III, seta 4 usually posterior to and much longer than seta 5 ; seta 5 -II,III usually with 4 or more branches; seta 9-VIII usually with 6 or more principal branches; pupa medium or small
6(5). Abdominal segment VIII with dark spots anteriorly and posteriorly on either side of midine, segment usually spotted; without dark median stripe on abdomen; with diagonal stripes enclosing conspicuous light areas laterally on segment VII howardii Abdominal segment VIII without dark spots anteriorly and posteriorly, but usually with darker median stripe, segment usually rather evenly dark laterally and on midne, with light pigmentation elsewhere; with dark median stripe on abdomen; without pattern as above but with diagonal stripes laterally on segments V-VII ciliata
7(5). Seta 2-P usually absent; seta 11-CT usually with 3 or more branches; seta 4-1 usually with 6 or more branches cyanescens Seta 2-P usually present; seta 11-CT usually single, occasionally double; seta 4-I usually with 4 or fewer branches (subgenus Grabhamia)
8(7). Seta 5-I with 4 or fewer branches; seta 7-I with 5 or more branches; seta 6-III,IV and 1-VI with 3 or more branches pyginaea
- Seta 5-I with 5 or more branches; seta 7-I with 4 or fewer branches; setae 6-III, I-VI, and 6-IV usually single or double
9(8). Seta 1-P very long, 0.25 length of paddle: seta I-VII usually placed about midway between lateral border and middorsal line of tergum discolor Seta 1-P usually about 0.16 length of pad-
die; seta 1-VII usually much closer to middorsal line than to lateral border of tergum columbiae

Key to the Genus Uranotaenia

1. Trumpet index about 11.0 or more: seta 11-CT usually double or triple sapphurina

- Trumpet index less than 7.0: seta 11-CT usually single lowii

Key to the Genus Wyeomyia

1. Paddle fringed with long, filamentous spicules on outer and apical 0.2 of inner margin; seta 4 -VIII less than 0.2 length of paddle mitchellii

- Paddle spicules short; seta 4-VIII 0.5 length of paddle

2
2(1). Seta 2 contiguous with seta I on abdominal segment VII; paddle index 1.5 smithii

- Seta 2 far removed from seta 1 on VII: paddle index usually greater than 1.5 . vanduzeei

Acknowledgments

I am indebted to T. G. Floore for peruscript was reviewed by C R RutledgeConnelly and C. N. Mores. This is Florida Agricultural Experiment Station Journal Series No. R-10547.

Literature Cited

Arnell. J. H. 1976. Mosquito studies (Diptera: Culicidae) XXIV. A revision of the scapularis group of Aedes (Ochlerotatus). Contributions of the American Entomological Institute 13(5): 1-144.
Barr, A. R. 1963. Pupae of the genus Culiseta Felt. II. Descriptions and a key to the North American species (Diptera: Culicidae). Annals of the Entomological Society of America 56: 324-330.
Barr, A. R. and S. Barr. 1969. Mostjuito studies (Diptera: Culicidae) XIII. Pupae of the genus Psorophora in North America and Puerto Rico. Contributioins of the American Entomological Institute 4(4): 1-20.
Belkin, J. N. 1962. Mosquitoes of the South Pacific (Diptera, Culicidae). Berkeley, University of California Press, 2 Volumes. I,020 pp.
Belkin, J. N., S. J. Heinemann, and W. A. Page. 1970. Mosquito studies (Diptera. Culicidae) XXI. The Culicidae of Jamaica. Contributions of the American Entomological Institute $\sigma(\mathrm{I})$: $\mathrm{I}-319$.
Berlin. O. G. W. 1969. Mosquito studies (Diptera. Culicidae) XII. A revision of Neotropical subgenus Howardina of Aedes. Contributions of the American Entomological Institute 4(2): 1-190.
Darsie. R. F., Jr. 19.49. Pupae of the anopheline mos-
quitoes of northeastern United States (Diptera, Culicidae). Revista de Entomologia 20: 509-530. 1951. Pupae of the culicine mosquitoes of northeastern United States (Diptera, Culicidae, Culicini). Cornell University Agricultural Experiment Station Memior 304, 67 pp.
——. 2001. Redescription of the pupa of Culex (Melanoconion) iolambdis Dyar (Diptera, Culicidae). Journal of the American Mosquito Control Association 18: 277-279.

- 2003. First report of Ochlerotatus condolescens (Dyar and Knab) in the United States. Proceedings of the Entomological Society of Washington 105: 1067-1068.
Darsie, R. F., Jr. and J. F. Day. 2003. Studies of the genus Culex Linnaeus in Florida I. Redescription of the pupae of Culex nigripalpus Theobald and Cx. tarsalis Coquillett, vectors of St. Louis encephalitis, and a key to pupae of Culex species in eastern United States (Diptera, Culicidae). Proceedings of the Entomological Society of Washington 105: 100-107.
Darsie, R. F., Jr. and C. D. Morris. 2003. Keys to the adult females and fourth instar larvae of the mosquitoes of Florida (Diptera, Culicidae). Florida Mosquito Control Association Vol. 1, revised, (2003), 159 pp .

Floore, T. G., B. A. Harrison, and B. F. Eldridge. 1976. The Anopheles crucians subgroup in the United States (Diptera: Culicidae). Mosquito Systematics 8: 1-109.
Foote, R. H. 1954. The larvae and pupae of the mosquitoes belonging to the Culex subgenera Melanoconion and Mochlostryax. United States Department of Agriculture Technical Bulletin 1091, 128 pp.
Harbach, R. E. and K. L. Knight. 1980. Taxonomists' Glossary of the Mosquito Anatomy. Marlton, Plexus Publishing, Inc., 415 pp .
Lacey, M. S. and R. W. Lake. 1872. Description of the pupa of Aedes (Ochlerotatus) thibauti (Diptera: Culicidae). Florida Entomologist 55: 89-92.
Reinert, J. F. 1970a. Description of the pupa of Aedes (Ochlerotatus) dupreei (Diptera: Culicidae). Florida Entomologist 53: 243-247.

- 1970b. Description of the pupa of Aedes (Ochlerotatus) fulvus pallens (Diptera: Culicidae). Florida Entomologist 53: 47-50.
——. 1970c. Description of the pupa of Aedes
(Ocherotatus) infirmatus (Diptera: Culicidae). Florida Entomologist 53: 147-151.
——. 1970d. Description of the pupa of Aedes (Ochlerotatus) mitchellae (Diptera: Culicidae). Florida Entomologist 53: 73-77.
-1970e. Description of the pupa of Deinocerites cancer (Diptera: Culicidae). Florida Entomologist 53: 17-21.
-. 1970f. Description of the pupa of Toxorhynchites (Lynchiella) rutilus rutilus (Diptera: Culicidae). Florida Entomologist 53: 209-213.
——. 1970 g . Description of the pupa of Wyeomyia (Wyeomyia) vanduzeei and W. (W.) mitchellii (Diptera: Culicidae). Florida Entomologiat 53: 163-169.
- 1971. Description of the pupa of Aedes (Ochlerotatus) atlanticus and Aedes (O.) tormentor (Diptera: Culicidae). Florida Entomologist 54: 171-178.
- 2000. New classification for the genus Aedes (Diptera: Culicidae, Aedini) elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species. Journal of the American Mosquito Control Association 16: 175-188.
Reinert, J. F., R. E. Harbach, and I. J. Kitching. 2004. Phylogeny and classification of Aedini (Diptera: Culicidae), based on morphological characters of all life stages. Zoological Journal of the Linnean Society 142: 289-369.
Reinert, J. F., P. E Kaiser, and J. A.Seawright. 1997. Analysis of the Anopheles (Anopheles) quadrimaculatus complex of sibling species (Diptera: Culicidae) using morphological, cytological, molecular, genetic, biochemical and ecological techniques in an integrated approach. Journal of the American Mosquito Control Association 13(Supplement): 1-102.
Zavortink, T. J. 1968. Mosquito studies (Diptera, Culicidae) VIII. A prodrome of the genus Orthopodomyia. Contributions of the American Entomological Institute 3(2): 1-221.
—_. 1972. Mosquito studies (Diptera, Culicidae) XXVIII. The New World species formerly placed in Aedes (Finlaya). Contributions of the American Entomological Institute 8(3): 1-206.
Zavortink, T. J. and G. F. O’Meara. 1999. Culex (Micraedes) biscaynensis N. SP from Florida (Diptera: Culicidae). Journal of the American Mosquito Control Association 15: 263-270.

